Biomaterial Engineering Research Papers

Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.

Click here for New Editorial Instructions.

Benefits to authors
We also provide many author benefits, such as free PDFs, a liberal copyright policy, special discounts on Elsevier publications and much more. Please click here for more information on our author services.

Please see our Guide for Authors for information on article submission. If you require any further information or help, please visit our Support Center

Hide full Aims & Scope
free research papers- biomedical engineering-12


free research papers- biomedical engineering-12

Free download research paper

A. Pathak and S. Kumar (2011). Biophysical regulation of tumor cell invasion: Moving beyond matrix stiffness. Integrative Biology 3: 267-278 (PDF). A. Pathak and S. Kumar (2011). From molecular signal activation to locomotion: An integrated, multiscale analysis of cell motility on defined matrices. PLoS ONE 6: E18423 (PDF). S. Sen, W. P. Ng, and S. Kumar (2011). Contractility dominates adhesive ligand density in regulating cellular de-adhesion and retraction kinetics. Annals of Biomedical Engineering 39: 1163-1173 (PDF). J. Lee, B. H. Chu, S. Sen, A. Gupte, T. J. Chancellor, C.-Y. Chang, F. Ren, S. Kumar, and T. P. Lele (2011). Modulating malignant epithelial tumor cell adhesion, migration, and mechanics with nanorod surfaces. Biomedical Microdevices 13: 89-95 (PDF). 2010 K. Tanner, A. Boudreau, M. J. Bissell, and S. Kumar (2010). Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophysical Journal 99: 2775-2783 (PDF). A. J. Keung, S. Kumar, and D. V. Schaffer (2010). Presentation counts: Microenvironmental regulation of stem cells by biophysical and material cues. Annual Review of Cell and Developmental Biology 26: 533-556 (PDF). B. Ananthanarayanan and S. Kumar (2010). Cell mechanobiology in regenerative medicine: Lessons from cancer. Book chapter for the CRC Biomedical Engineering Handbook, CRC Press-Taylor and Francis Group, LLC (scheduled for publication in 2011). S. Kumar (2010). Cell-extracellular matrix mechanobiology in cancer. Chapter for Comprehensive Biophysics, Elsevier (scheduled to appear online in 2011). A. J. Keung, K. E. Healy, S. Kumar, and D. V. Schaffer (2009). Biophysics and dynamics of natural and engineered stem cell microenvironments. Wiley Interdisciplinary Reviews (WIREs): Systems Biology and Medicine 2: 49-64 (PDF). W. A. Lam, L. Cao, V. Umesh, A. J. Keung, S. Sen, and S. Kumar (2010). Extracellular matrix rigidity modulates neuroblastoma cell differentiation and N-Myc expression. Molecular Cancer 9: 35 (PDF). A. Patel, R. G. Thakar, M. Chown, P. Ayala, T. A. Desai, and S. Kumar (2010). Biophysical Mechanisms of Single-Cell Interactions with Microtopographical Cues. Biomedical Microdevices 12: 287-296 (PDF). T. A. Ulrich, A. Jain, K. Tanner, J. L. MacKay, S. Kumar (2010). Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31: 1875-1884 (PDF). T. A. Ulrich and S. Kumar (2011). Mechanobiology in health and disease in the central nervous system. Book chapter for Mechanobiology Handbook, CRC Press-Taylor and Francis Group, LLC. S. Sen and S. Kumar (2010). Combining mechanical and optical approaches to dissect cellular mechanobiology. Journal of Biomechanics 43: 45-54 (PDF). 2009 S. Sen, M. Dong, and S. Kumar (2009). Isoform-specific contributions of α-actinin to glioma cell mechanobiology. PLoS ONE 4: E8427 (PDF). S. Kumar, P. Parot, J. L. Pellequer (2009). Second international AFM Biomed conference on AFM in the life sciences and medicine, 16-18 October 2008, Monterey, CA, USA [editorial]. Journal of Molecular Recognition 22: 345-346. (PDF) D. J. D Sa, E. M. de Juan Pardo, R. de las Rivas Astiz, S. Sen, and S. Kumar (2009). High-throughput indentational elasticity measurements of hydrogel extracellular matrix substrates. Applied Physics Letters 95:63701 1-3 (PDF). S. Sen and S. Kumar (2009). Cell-matrix de-adhesion dynamics reflect contractile mechanics. Cellular and Molecular Bioengineering 2: 218-230. (PDF). T. A. Ulrich, E. M. de Juan Pardo, and S. Kumar (2009). The mechanical rigidity of the extracellular matrix regulates the structure, motility, and proliferation of glioma cells. Cancer Research 69: 4167-4174. (PDF). S. Kumar and V. M. Weaver (2009). Mechanics, malignancy, and metastasis: The force journey of a tumor cell. Cancer and Metastasis Reviews 28:113-127. (PDF) 2008 Luo, Y., Xu, X., Lele, T., Kumar, S., and Ingber, D.E. (2008). A multi-modular tensegrity model of an actin stress fiber. Journal of Biomechanics 41: 2379-2387. (PDF) R. G. Thakar, M. G. Chown, A. Patel, L. Peng, S. Kumar, and T. A . Desai (2008). Contractility-dependent modulation of cell proliferation and adhesion by microtopographical cues. Small 4: 1416-1424. (PDF) R. J. Mannix*, S. Kumar*, F. Cassiola, M. Montoya-Zavala, E. Feinstein, M. Prentiss, and D. E. Ingber (2008). Nanomagnetic actuation of receptor-mediated signal transduction. Nature Nanotechnology 3: 36-40 [*equal contribution]. (PDF) (Nature Nanotechnology Highlight) 2007 M. Chown and S. Kumar (2007). Imaging and manipulating the structural machinery of living cells on the micro- and nanoscale. International Journal of Nanomedicine 2: 333-344 (PDF) . T. P. Lele, J. Sero, B. Matthews, S. Kumar, N. Xia, M. Montoya-Zavala, T. Polte, D. R. Overby, N. Wang, and D. E. Ingber (2007). Tools to study cell mechanics and mechanotransduction. In Cell Mechanics (Academic Press, Y.-L. Wang and D. E. Discher, Eds.) Methods in Cell Biology 83: 435-464. (PDF) T. P. Lele and S. Kumar (2007). Brushes, cables, and anchors: Recent insights into multiscale assembly and mechanics of cellular structural networks. Cell Biochemistry and Biophysics 47: 348-360 (PDF). 2006 C. P. Brangwynne, F. C. MacKintosh, S. Kumar, N. A. Geisse, J. Talbot, L. Mahadevan, K. K. Parker, D. E. Ingber, and D. A. Weitz (2006). Microtubules can bear enhanced compressive loads in living cells because of lateral reinforcement. Journal of Cell Biology 173: 733-741. (PDF) (JCB Highlight) (Current Biology Dispatch) S. Kumar, I.Z. Maxwell, A. Heisterkamp, T.R. Polte, T.P. Lele, M. Salanga, E. Mazur, and D.E. Ingber (2006). Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization and extracellular matrix mechanics. Biophysical Journal 90: 3762-3773. (PDF) T. P. Lele, J. Pendse, S. Kumar, M. Salanga, J. Karavitis, and D. E. Ingber (2006). Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells. Journal of Cellular Physiology 207: 187-194. (PDF) 2005 A. Heisterkamp, I. Z. Maxwell, E. Mazur, J. M. Underwood, J. A. Nickerson, S. Kumar, and D. E. Ingber (2005). Pulse energy-dependence of subcellular ablation by femtosecond laser pulses. Optics Express 13: 3690-3696. (PDF) 2004 and earlier S. Kumar and J. H. Hoh (2004). Modulation of repulsive forces between neurofilaments by sidearm phosphorylation. Biochemical and Biophysical Research Communications 324: 489-496. (PDF) R. Mukhopadhyay, S. Kumar, and J. H. Hoh (2004). Molecular mechanisms for organizing the neuronal cytoskeleton. BioEssays 26: 1017-1025. (PDF) S. Kumar, X. Yin, B. D. Trapp, M. E. Paulaitis, and J. H. Hoh (2002). Role of long-range repulsive forces in organizing axonal neurofilament distributions: Evidence from mice deficient in myelin-associated glycoprotein. Journal of Neuroscience Research 68: 681-690. (PDF) J. Schneider, P. Berndt, K. Haverstick, S. Kumar, S. Chiruvolu, and M. Tirrell (2002). Surface force measurements of electrostatic and hydrogen-bonding interactions between bilayers of glycine amphiphiles. Langmuir 18: 3923-3931. (PDF) S. Kumar, X. Yin, B. D. Trapp, J. H. Hoh, and M. E. Paulaitis (2002). Relating interactions between neurofilaments to the structure of axonal neurofilament distributions through polymer brush models. Biophysical Journal 82: 2360-2372. (PDF) S. Kumar and J. H. Hoh (2001). Probing the machinery of intracellular trafficking with the atomic force microscope. Traffic 2: 746-756. (PDF) S. Kumar and J. H. Hoh (2000). Direct visualization of vesicle-bilayer complexes by atomic force microscopy. Langmuir 16: 9936-9940. (PDF) J. Schneider, P. Berndt, K. Haverstick, S. Kumar, S. Chiruvolu, and M. Tirrell (1998). Force and adhesion measurements between hydrogen-bonded layers of glycine-functionalized amphiphiles. Journal of the American Chemical Society 120: 3508-3509. (PDF)


free research papers- optical imaging-Biomedical Engineering 11

free research papers-biomedical engineering-Biomedical Modeling-13
Categories: 1

0 Replies to “Biomaterial Engineering Research Papers”

Leave a comment

L'indirizzo email non verrà pubblicato. I campi obbligatori sono contrassegnati *